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Abstract

Goyal (Journal of the Operational Research Society 36 (1985) 35-38) discusses the economic order quantity under
conditions of permissible delay in payments. An implicit assumption of Goyal (Journal of the Operational Research
Society 36 (1985) 35-38) is that the items are obtained from an outside supplier. The entire lot size is delivered at the
same time. If we wish to adopt all results obtained by Goyal (Journal of the Operational Research Society 36 (1985) 35—
38), then we are effectively assuming that the replenishment rate is infinite. The main purpose of this paper is to extend
Goyal (Journal of the Operational Research Society 36 (1985) 35-38) to the case that the units are replenished at a finite
rate. When the replenishment rate approaches to infinite, Goyal (Journal of the Operational Research Society 36 (1985)
35-38) will be a special case of this paper.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The EOQ model is widely used by practitioners as a decision-making tool for the control of inventory.
The traditional EOQ model assumes that the retailer must be paid for the items as soon as the items are
received. However, in practice the supplier will offer the retailer a delay period, that is trade credit period, in
paying for the amount of purchasing cost. Before the end of trade credit period, the retailer can sell the
goods and accumulate revenue and earn interest. A higher interest is charged if the payment is not settled
by the end of trade credit period. In real world, the supplier often makes use of this policy to promote their
commodities. Many related articles can be found in Aggarwal and Jaggi (1995), Chang and Dye (2001),
Chang et al. (2001), Chen and Chuang (1999), Chu et al. (1998), Chung (2000, 1998a, b), Goyal (1985),
Jamal et al. (1997, 2000), Khouja and Mehrez (1996), Liao et al. (2000), Sarker et al. (2000, 2001), and Shah
and Shah (1998) and their references.
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Goyal (1989) is the first person to consider the economic order quantity under conditions of permissible
delay in payments. Goyal (1985) is frequently cited when the inventory systems under conditions of
permissible delay in payments are discussed. An implicit assumption of Goyal (1985) is that the items are
obtained from an outside supplier and the entire lot size is delivered at the same time. Therefore, if we wish
to adopt all results obtained by Goyal (1985), then we are effectively assuming that the replenishment rate is
infinite. When the replenishment rate is much larger than the demand rate, this assumption is probably
satisfactory as an approximation. However, if the rate of replenishment is comparable to the rate of
demand, Goyal’s analysis (1985) needs to be modified to reflect this situation. Consequently, the main
purpose of this paper is to extend Goyal’s model (1985) to the case that all items are replenished at a finite

rate.

2. Model formulation and convexity

The following notation and assumptions will be used throughout:

2.1. Notation

demand rate per year

replenishment rate per year, P> D

cost of placing one order

(=1-D/P=0)

unit purchasing price per item

unit stock-holding cost per item per year excluding interest charges
interest which can be earned per $ per year

interest charges per $ investment in inventory per year
permissible delay period

the cycle time

TVC(T) the total relevant cost per unit time when 7> 0

NEESTOT AN

PM
TVC(T) if T>—5

_ PM
TVCT) = Tve,(T) if M< T<
TVC(T) if T<M,

A DTh DT? PM? DM? .
TVCl(T):+p+cIkp(— )/T—CI(,( )/T if T>0,

T 2 2 2 2
A DT D(T — M)? DM?
TVCZ(T):7+#+clk[¥}/T—cle( 5 )/T it 7>0,

A DThp I[DTz
- e

TVCs(T):7+ 3 5 +DT(MT)}/T if T>0,

7 24t DM?*c(I; — 1) — PM3cI,
b Dp(h + cl)

if 24 + DM?c(Iy, — I,) — PM?cI} > 0,
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. 4+ DM - 1)
N D(hp + cly)

Y
T = | —
’ D(hp + cl.)

T" the optimal cycle time of TVC(T).

2.2. Assumptions

(1) Demand rate, D, is known and constant.

(2) Replenishment rate, P, is known and constant.

(3) Shortages are not allowed.

(4) Time period is infinite.

(5) Iy =1,.

(6) During the time the account is not settled, generated sales revenue is deposited in an interest-bearing
account. When 7' > M, the account is settled at 7= M and we start paying for the interest charges on
the items in stock. When T'<< M, the account is settled at 7 = M and we do not need to pay any
interest charge.

The annual total relevant cost consists of the following elements.
(1) Annual ordering cost=(A4/T).
(2) Annual stock-holding cost (excluding interest charges) (shown in Fig. 1)
__hT(P—D)YDT/P) DTh I D\ DThp
N 2T 2 2

P

(3) There are three cases to occur in costs of interest charges for the items kept in stock per year.
Case I: M<PM/D<T, shown in Fig. 1.

DT? P — D)M? DT?> PM?
Annual interest payable =clj p_{ ) /T =chp| —— /T. (1)
2 2 2 2
Case 2: M<T<PM/D, shown in Fig. 2.
D(T — M)
Annual interest payable =cIj {(f)] /T. (2)
Case 3: T< M.
In this case, no interest charges are paid for the items.
(4) There are three cases to occur in interest earned per year.
Case I: M<PM/D<T.
DM?
Annual interest earned =c/, (T) /T. (3)

Case 2: M<T<PM/D.

DM?
Annual interest earned =c/, (T) /T. 4)
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Fig. 1. The total accumulation of interest payable when PM/D<T.
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Fig. 2. The total accumulation of interest payable when M <T<PM/D.
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Fig. 3. The total accumulation of interest earned when 7'< M.

Case 3. T<M, shown in Fig. 3.

. DT?
Annual interest earned =cl, - +DT(M —-T)|/T. &)
From the above arguments, the annual total relevant cost for the retailer can be expressed as TVC(T)
= ordering cost + stock-holding cost +interest payable—interest earned.
We show that the annual total relevant cost, TVC(T), is given by

PM
TVC(T) if T>,

VG = Tveyr) if M<T<%, (6a=c)

TVCy«(T) if 0<T<M,
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where
TVC(T) :;—i—%hp—kclkp(DTTz— P]fz)/T—cIe (DTW>/T, @)
TVC(T) :;+%h”+ ol [D(T%M)T T — el (Djz‘ﬂ) I, ®)
TVCs(T) = % n Dghp e, [DZTz +DT(M — T)} /T. )

Since TVC(PM /D) = TVCy(PM /D) and TVCy(M) = TVC3(M), TVC(T) is continuous and well defined.
All TVC((T), TVCy(T), TVC3(T) and TVC(T) are defined on T > 0. Egs. (7), (8) and (9) yield

24 — M*(cIi Pp + Dcl,) h+ cly 24 + DM?*c(I;, — 1,) — PM?cI;
/ _ K e - _ e
TVE(T) = [ o ] 4 Dp( . ) [ e
h+ cl
+ Dp< = k), (10)
24 — M*(cIyPp + Dcl,) 24 + DM?c(Iy — I,) — PM?cl
T T
24+ DM?c(I; — 1) hp + cIj
/ — I tsd
TVCY(T) = { 373 +D 5 , (12)
24 + DM?c(I) — I,
Ve T) = AT Tf( 1), (13)
—A hp + cl,
TVCL(T) = T2+D<2> (14)
and
24
TVCY(T) = 73>0. (15)

Eqgs. (13) and (15) imply that TVC,(T) and TVC;3(T) are convex on T > 0. However, TVC(T) is convex on
T>0 if 24 + DM?c(Iy — 1,) — PM?cI; > 0. Furthermore, we have TVC|(PM /D) = TVC5(PM /D) and
TVC,(M) = TVCY(M). Therefore, Egs. (6a—) imply that TVC(T) is convex on T >0 if 24 + DM?c(I) —
1) — PM?cI; > 0. Since Egs.(11), (13) and (15), TVC|(PM /D)= TVCY(PM /D) and TVCY(M) =
TVC,(M), we have the following results:

Theorem 1. (A) If 2A + DM?*c(I — I,) — PM?cI; <0, then TVC(T) is convex on (0, PM /D] and concave on
[PM/D, ).

(B) If 24 + DM?*c(I; — I,) — PM?cI; > 0, then TVC(T) is convex on (0, o).
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3. The determination of the optimal cycle time T"

Recall
" 24 + DM?*c(Iy — 1) — PM?cl;, . 5 )
T, = f24+DM-c(I;, — 1,) — PM~cIl; >0 16
1 \/ Dp(h I CIk) 1 + C( k c’) Clj 5 ( )
* 24 + DM?*c(I — I,)
= 17
h \/ D(hp + cly) (17

and

" 24
"=\ Bl + el "

introduced in the previous section. Then TVC;(T:) =0 for all i =1,2,3. Furthermore, we have the
following results:

Lemma 1. If 24 + DM?c(Iy — 1,) — PM?*cl; <0, then T} <(PM /D).

Proof. If T, >(PM /D), then
24 + DM c(I) — Ie)>P2M2

= . 19
D(hp + cly) D2 (19)
Eq. (19) yields
PZ 2

24+ DM*c(Iy — I)> 5 (hp + cIy). (20)

Therefore, we have
5 5 PM?
2A+ DM*c(I — I,) — PM~cl. > [Php + cIi(P — D)] > 0. (21)

D
Eq. (21) is a contradiction. Consequently, 75 <(PM /D). O

Lemma 2. T; <M if and only if Ty <M.

Proof. If T5< M, Eq. (18) implies

2A<DM?*(hp + cl,).
Hence

24 + DM?*c(I, — I.Y<DM?*(hp + cl,) + DM?*c(I; — 1,).
We have

24 4+ DM?*c(I — L) _
D(hp + C]k)

and
Ty <M.
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Similarly, if Tz* < M, we can obtain T; < M. Combining the above arguments, this completes the proof of
Lemma 2. [

Lemmas 1 and 2 imply the following theorem:

Theorem 2. Suppose that 24 + DM?*c(I — I,) — PM?cI; <0. Then

(A) If Ty <M, then T" = Tj.
(B) If Ty=M, then T" = T,.

Proof. If 24 + DM?c(I — I,) — PM?cI; <0, Eq. (10) implies that TVC(T) is increasing on [PM /D, ).
There are two cases which occur:

(A) Suppose that T; <M. Lemma 2 implies T, < M. Hence

(1) TVCy(T) is increasing on [M, PM/D].
(il) TVC5(T) is decreasing on (0, T3] and increasing on [T5, M].

Combining (i), (ii) and Egs. (6a—), we have that TVC(T) is decreasing on (0, T3*] and increasing on
[T;, ). Consequently, 7" = T5.

(B) Suppose that T5> M. Lemmas 1 and 2 imply M < T><PM/D. Hence

(i) TVCx(T) is decreasing on [M, T5] and increasing on [T5, PMID ].
(i) TVC5(T) is decreasing on (0, M].

Combining (i), (ii) and Egs. (6a—c), we have that TVC(T) is decreasing on (0, Tz*] and increasing on
[T;, o). Consequently, T* = T5.

Incorporating the above arguments, we have completed the proof of Theorem 2. [

If 24 + DM?*c(I — I,) — PM?cI; > 0, then TVC,(T) is convex for all i = 1,2,3. By the convexity of
TVC(T) (i=1,2,3), we see

<0 if T<T;
TVCAT){ =0 if T =T, (22a—c)
>0 if T>T;.

Eqgs. (22a—) imply that TVC;(T) is decreasing on (0, Tl-*] and increasing on [Ti*, o) foralli=1,2,3.
Egs. (10), (12) and (14) yield

PM PM\  —24+ (M2/D)P(P — D)h + clu(P* — D) + cI,D?
Tch( = > —TVC’2< > > _ 24+ (/DI 2(PA)4/;;2"( S+ D] (23)
and
TVC,(M) = TVC, (M) = —2A+ DM Urp + clo) (24)

2M?
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Furthermore, we let
MZ
Ay = =24 +—{P(P— D) + cIi(P* — D*) + cI,D*

and
Ay = =24 4+ DM*(hp + cl,).

Then, we have

Ay =4, (25)
Ay >0 if and only if T, <PM/D, (26)
Ay >0 if and only if T; <M. (27)

Lemma 3. T, <PM/D if and only if T5 <PMD.
Proof. If T; <PMI/D, Eq. (16) implies
24 + DM?*c(I — 1,) — PM?cl, <(P*M?*/D*)[Dp(h + cl})).
Hence
24 + DM?c(Iy — 1)< (P*M?/D*)[D(hp + cI})].
We have
\/2/1 + DM*c(l — 1) _PM

Dhp+cly) D
and
T, <PM/D.
Similarly, if 7y < PM /D, we can obtain T} < PM /D. Combining the above arguments, this completes the
proof of Lemma 3. O

Combining above results (i), (ii), (iii) and Lemma 3, we have the following theorem:

Theorem 3. Suppose that 24 + DM?*c(I;, — I,) — PM?cI; > 0. Then

(A) If A,>0 and A, >0, then TVC(T") = TVC(T;) and T" = T;.
(B) If 41<0 and A, <0, then TVC(T") = TVC(Ty) and T" = Ty.
(C) If 4, >0 and A, <0, then TVC(T") = TVC(T,) and T" = T,.

Proof. (A) If 4,>0 and 4,>0, then Ty<M,T,<M,T{<PM/D and T,<PM/D. We have
TVC,(PM /D) = TVC,(PM /D) > 0 and TVC,(M) = TVC,(M)>0. Egs. (22a-c) imply that

(1) TVC(T) is increasing on [PM /D, o).
(if) TVCy(T) is increasing on [M, PM /D).
(iii) TVC;(T) is decreasing on (0, 73] and increasing on [T, M].
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Combmmg (1), (ii), (iii) and Eqs (6a—c), we have that TVC(T) is decreasing on (0, T ] and increasing on
[T;, ). Consequently, 7" = T5.

(B) If 4, <0 and 4, <0, then T3 >M,T5>M,T;>PM/D and T; >PM/D. We have TVC|(PM /D) =
TVC,(PM /D)<0 and TVC5(M) = TVC,(M)<0. Egs. (22a—) imply that

(i) TVC(T) is decreasing on [(PM /D), T|] and TVC(T) is increasing on [T}, o).
(il) TVCy(T) is decreasing on [M, (PM /D).
(iit) TVCs(T) is decreasing on (0, M].

Combining (i), (ii), (iii) and Egs. (6a—), we have that TVC(T) is decreasing on (0, 7|] and increasing on
[T}, o). Consequently, T"=T}.

(C)If A4y >0 and 4,<0, then Ty > M, T> > M, T) <PM /D and T, < PM/D. We have TVC|(PM /D) =
TVCy(PM /D) >0 and TVCY(M) = TVC’3(M)<0 Eqs (22a—) 1mp1y that

(1) TVC(T) is increasing on [PM /D, o).
(ii) TVCA(T) is decreasing on [M, T5] and TVCy(T) is increasing on [T5, PM /D).
(iii)) TVCs(T) is decreasing on (0, M].

Combining (i), (ii), (iii)) and Egs. (6a—c), we have that TVC(T) is decreasing on (0, T; ] and increasing on
[T,, ©). Consequently, T* = T,.
Incorporating the above arguments, we have completed the proof of Theorem 3. [

4. Special case

When P— oo, then

_ 2 2
11m TVCy(T) = A DTh + ¢l [D(T M) }/T —cl, (D]2\4 )/T,

2 2

2
lim TVCi(T) = A Lo, [D T

P— o0 2

+DT(M — T)} /T,

. A+ DM -1
lim Tzz\/ + DM clly — L)

P> D(h+ cly)
and
lim T =)0
Poow D(h+ cI,)
Let

2
TVC(T) = 4 D2Th+c1k{D(T;M)}/T—de(DTW)/T,

2
TVC(T) = A DTh I[DT

- 5+ DT(M ~ T)}/
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\ \/2/1 + DM2e(I — 1)

Ih= D(h + cIy)
and
_, 24
7= |—— .
3 D(h + cl,)

Then, Eqgs. (6a—) will be reduced as follows:

TVC(T) if M <T,
TVC(T) = ) (28a,b)
TVCs(T) if 0<T<M.
Eqgs. (28a, b) will be consistent with Egs. (1) and (4) in Goyal (1985), respectively. Hence, Goyal (1985)
will be a special case of this paper.

Since
fim A= o
and
I;iin% Ay = =24 + DM*(h + cl,),

if we let A = —2A4 + DM?(h + cl,), Theorem 3 can be modified as follows:

Theorem 4. (A)IfA>O lhen T = T3
(B) If A<0, then T" —T
(C)IfA=0, then T" —T2_T§:M.

Theorem 4 has been discussed in Chung (1998a). Hence, Theorem 1 in Chung (1998a) is a special case of
Theorem 3 of this paper.

5. Numerical examples
To illustrate the results, let us apply the proposed method to solve the following numerical examples:

Example 1. Let A = $250/order, D = 4000 units/year, P = 5000 units/year, M = 0.1 year, ¢ = $100/unit,

I = $0. 15/$/year I, = $0.12/$/year, h = $5/unit/year. Therefore, 24 + DMzc(Ik —1,) — PM?cl; =
—130<0 and Tg =0.09806 <M = 0.1 year. Using Theorem 2(A), we get T~ = T3 = 0.09806 year. The
optimal order quantity will be DT} = 392 units. TVC(T") = TVC(T;)=5$299.

Example 2. Let A = $100/order, D = 2000 units/year, P = 3000 units/year, M = 0.1 year, ¢ = $60/unit,

I, = 30. 15/$/yedr I, = $0.12/$/year, h = $5/unit/year. Therefore, 24 + DMzc(Ik — 1) — PM?cl; =
—34<0 and T3 =0.1062 >M=0.1 year. Using Theorem 2(B), we get T" = T, = 0.1052 year. The
optimal order quantity will be DT, = 210 units. TVC(T") = TVC(T5)=%441.5,

Example 3. Let 4 = $100/order, D = 2600 units/year, P = 3000 units/year, M = 0.1 year, ¢ = $50/unit,
I, = $0.15/$/year, I, = $0.13/$/year, h = $10/unit/year. Therefore, 24 + DM?*c(I; — I,) — PM?*cl;=1>0,
Ay =79.8>0 and 4, = 3.67 > 0. Using Theorem 3(A), we get T° = T; = 0.0991 year. The optimal order
quantity will be DT; = 258 units. TVC(T") = TVC(T3)=$328.3.
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Example 4. Let 4 = $100/order, D = 2500 units/year, P = 3000 units/year, M = 0.1 year, ¢ = $35/unit,
I = $0.15/$/year, I, = $0.12/$/year, h = $5/unit/year. Therefore, 24 + DM?c(I; — 1,) — PM?*cI;, = 68.8 >
0, 4) = —7.25<0 and 4, = —74.17<0. Using Theorem 3(B), we get T* = T} = 0.1269 year. The optimal
order quantity will be DT} = 317 units. TVC(T") = TVC(T}) = $541.9.

Example 5. Let 4 = $100/order, D = 3000 units/year, P = 3200 units/year, M = 0.1 year, ¢ = $50/unit,
I, = $0.15/$/year, I, = $0.12/$/year, h = $5/unit/year. Therefore, 24 + DM?*c(I; — 1,) — PM?*cl; =5>0,
Ay =21.7>0and 4, = —10.6<0. Using Theorem 3(C), we get T* = T, = 0.1022 year. The optimal order
quantity will be DT, = 307 units. TVC(T") = TVC(T;)=$145.7.

6. Conclusions

This paper extends Goyal (1985) to the case that the units are replenished at a finite rate.
Theorem 1 explores the convexity of the annual total relevant cost function. On the other hand,
Theorems 2 and 3 describe the effective solution procedure to find the optimal cycle time of the
annual total relevant cost function. If the replenishment rate approaches to infinite, the inventory
model discussed in this paper is reduced to Goyal (1985). Consequently, Goyal (1985) is a special
case of this paper. Finally, numerical examples are used to illustrate all results obtained by this

paper.
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